Online Mining of Maximal Frequent Itemsequences from Data Streams

نویسندگان

  • Guojun Mao
  • Xindong Wu
  • Chunnian Liu
  • Xingquan Zhu
  • Gong Chen
  • Yue Sun
  • Xu Liu
چکیده

Mining data streams often requires real-time extraction of interesting patterns from dynamic and continuously growing data. This requirement has imposed challenges on discovering and outputting current useful patterns in an instant way, commonly referred to as online streaming data mining. In this paper, we present INSTANT, a novel algorithm that explores maximal frequent itemsequences from streaming data in an online fashion. We first provide useful operators on the lattice of itemsequential sets, and then apply them to the algorithm design of INSTANT. In comparison with the most popular methods such as close-itemset based mining algorithms, INSTANT has solid theoretical foundations to ensure that it employs more compact in-memory data structures than closed itemsequences. Experimental results show that our method can achieve better results than previous related methods in terms of both time and space efficiency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online mining maximal frequent structures in continuous landmark melody streams

In this paper, we address the problem of online mining maximal frequent structures (Type I & II melody structures) in unbounded, continuous landmark melody streams. An efficient algorithm, called MMSLMS (Maximal Melody Structures of Landmark Melody Streams), is developed for online incremental mining of maximal frequent melody substructures in one scan of the continuous melody streams. In MMSLM...

متن کامل

Mining maximal frequent itemsets from data streams

Frequent pattern mining from data streams is an active research topic in data mining. Existing research efforts often rely on a two-phase framework to discover frequent patterns: (1) using internal data structures to store meta-patterns obtained by scanning the stream data; and (2) re-mining the meta-patterns to finalize and output frequent patterns. The defectiveness of such a two-phase framew...

متن کامل

Mining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows

Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...

متن کامل

DELAY-CFIM: A Sliding Window Based Method on Mining Closed Frequent Itemsets over High-Speed Data Streams

Closed frequent itemset mining plays an essential role in data stream mining. It could be used in business decisions, basket analysis, etc. Most methods for mining closed frequent itemsets store the streamlined information in compact data structure when data is generated. Whenever a query is submitted, it outputs all closed frequent itemsets. However, the online processing of existing approache...

متن کامل

Single-Pass Algorithms for Mining Frequency Change Patterns with Limited Space in Evolving Append-Only and Dynamic Transaction Data Streams

In this paper, we propose an online single-pass algorithm MFC-append (Mining Frequency Change patterns in append-only data streams) for online mining frequent frequency change items in continuous append-only data streams. An online space-efficient data structure called ChangeSketch is developed for providing fast response time to compute dynamic frequency changes between data streams. A modifie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005